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Spurious Modes in Spectral Collocation Methods with Two
Non-periodic Directions
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Department of Theoretical and Applied Mechanics
and
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University of Illinois, Urbana, IL 61801.

Abstract

Collocation implementation of the Kleiser-Schumann’s method in geometries with two non-
periodic directions is shown to suffer from three spurious modes — line, column and checkerboard
— contaminating the computed pressure field. The corner spurious modes are also present but they
do not affect evaluation of pressure related quantities. A simple methodology in the inversion of the

influence matrix will efficiently filter out these spurious modes.
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search Center, Hampton, VA 23665. Authors are grateful to D. Funaro and C.L. Streett for their
helpful discussions.
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1. Introduction

Most existing numerical solutions of incompressible Navier-Stokes equations in three di-
mensions employ the primitive-variable formulation. Here, the velocity field and pressure can not
be approximated independently and must satisfy a compatibility condition. Approximating both ve-
locity and pressure by polynomials of the same degree will result in some spurious modes for the
pressure [1]. In a spectral collocation implementation, these spurious modes can be characterized
as the spurious components of the pressure field whose discrete gradient at the interior collocation
points, where discretized momentum equations are satisfied, is zero. Such pressure components

have no effect on velocity and are therefore left uncontrolled by the discretized governing equations.

Existence of spurious pressure modes in a spectral simulation was first pointed out by Mor-
choisne [2]. In coupled spectral implementations where the continuity equation is discretized direct-
ly, theoretical analysis of the spurious modes is on a firm footing [1]. When a non-staggered grid
is employed it has been shown that a fully periodic problem has no spurious modes, discounting the
arbitrariness of the mean value of pressure in an incompressible flow. In a flow with one noﬁ-period-
ic direction pressure has one spurious mode, and problems with two non-periodic directions have
seven (1-line, 1-column, 1-checkerboard and 4-corner) spurious modes [1,3]. These results have
been shown to apply to the following spectral implementations; Galerkin Legendre, Legendre tau,
Galerkin Chebyshev, Chebyshev tau and Chebyshev collocation with Gauss-Lobatto points. In a
collocation implementation, the spurious modes can be avoided with an appropriately staggered
mesh for velocity and pressure. Montigny-Rannou and Morchoisne [4] have recently described an
algorithm for the two non-periodic problem on a half-staggered grid which involves only one
(checkerboard) spurious mode. The spurious modes can be completely avoided in a two non-period-

ic problem with a fully-staggered mesh [5, 6].

A second class of numerical algorithms avoids direct solution of the continuity equaﬁon by
solving a Poisson equation for pressure [ 1]. The time-splitimplementation [7] is the simplest of them
all but it suffers from non-zero boundary divergence, non-zero slip velocity and time-splitting errors.
Kleiser-Schumann’s influence matrix method can be used to enforce zero boundary divergence and
no-slip condition [8,9]. A partial implementation of the influence matrix is simpler, but will result
in small but non-zero interior divergence [10]. A full implementation of the Kleiser-Schumann’s

method with tau (or collocation) correction enforces interior zero divergence as well. Here we iden-
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tify the spurious modes in the collocation implementation of the Kleiser-Schumann method [8, 9,
11] with tau correction for a problem with two non-periodic directions to be the line, column, check-
erboard and corner modes. A simple correction procedure which will automatically filter these spu-
rious modes is obtained. This correction procedure is applied in the simulation of a turbulent square

duct flow [11] and is found to be very effective in eliminating spurious modes.

2. Spurious Modes for Kleiser-Schumann’s Method

The full implementation of the Kleiser-Schumann’s method with collocation correction can

be given by the following equations and boundary conditions:

Vp=-V-(NL)+V-B in 2
av = — 1 g2 -
6t+NL Vp+ReV V+B in 2,002
v=yY, on 982 (Ia-le)
V-V=20 on 982
B=0 in £

where NL is the nonlinear term in the Navier-Stokes equation and V, is the :\;élocity boundary condi-
tion. The édeéEﬁﬁatian and boundary conditions are in their discretized form, therefore the syrﬁ-
bols V,V - and V2 represent discrete gradient, divergence and Laplacian operators, and £2 and 92
represent intefid} phd bophdary collocation points. Since the momentum equatipn is satisfied only
in the interiof, Brépresents tl{e boundafy momentum residdaj and is nonzero only on the boupdary.
Combiﬁiﬁ?éﬁﬁition (la) and the diéé}été divergence of equation (lb) one pbtains

ﬂé;_V = —Rl—eVZ(V - V) in , provided the discrete divergence of the discrete gradient operator is

identically equal to the discrete Laplacian operator. The above equation for the velocity divergence

along with the boundary condition given by equation 1d, results in a divergence free velocity field
both in the intérior and on the boundary.

By definition, each spurious mode is a valid solution to the discretized governing equations
and appropriate 'bpundary conditions. The spurious modes have a non-zero contribution to pressure

but have no effect on velocity, therefore Vg, = 0, where subscript “sp” stands for the spurious
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mode. The spurious pressure components therefore satisfy

V2psp =V- Bsp in Q
0= - Vp, + By in Q.0 (2-20)
By, =0 “in Q

where By, is the corresponding spurious boundary momentum residual. Any non-trivial solution to
the above linear equations represents a spurious mode, which when added to the true solution will

still satisfy the discretized Navier-Stokes equations and boundary conditions.

Eight solutions to the above equations can be identified. First of which is the non-spurious
solution, psp = constantand By, = 0, which indicates that pressure is evaluated only up to an arbitrary
additive constant in incompressible flows. The first two spurious modes are the line and column
modes

(£ DVVNx)? atx=%1

Pp =Ty, Bip= {0 otherwise Bagp = Bagp =0

3

N =
Py =Ty, By, = {E):h D7y’ itth)ér:vijel » By, =By, = 0
Here (Nx+1) and (Ny+1) are the number of points along the non-periodic Chebyshev directions and
the third direction is at most periodic. B;, B, and B3 are the three components of the boundary mo-
mentum residual and only the normal component is nonzero. Tyy and Ty, are Chebyshev polyno-

mials of the highest degree along x and y. The third spurious mode is the checkerboard mode, with

Nx
(£ DVN)? Ty (y) atx=+=1
Psp = TNx(X) TNy()’) ) Blsp = [ 0 NY(y otherwise

C))

B
A P otherwise

N =
_ {(:t DY Ty aty=x1 o _ o
= , 35p =
These three spurious modes have no variation in the periodic z direction and therefore contaminate
only the zerot® mode along the z direction. The other four spurious modes are the corner modes and
each of them can have arbitrary variation along the z direction. For example, let f1,1(2) be the arbi-
trary variation along the x=1, y=1 corner. Then the corner mode corresponding to this corner can

now be written as
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fl,l(Z) atx=y=1 fl,l(z) Dy(x) aty= +1
PSP = Blsp =

0 otherwise 0 otherwise
df ®
f11(2) Dy (0)  atx = + 1 JLL atx=y=1
B2SP = ; wp = .
0 otherwise 0 otherwise

where Dy, (x) is the discrete derivative of the polynomial which collocates to zero at all points except
at x=1. The corner modes for the other three corners can be written similarly. The corner spurious
modes simply reflect the fact thatin a collocation implementation the pressure along the fourcorner-
lines never enter into the computation and therefore their values remain unspecified. This arbitrari-
ness associated with the corner pressure values is relatively innocuous, since they are not required
in computing pressure related quantities of interest. On the other hand, the other three spurious

modes are buried in the numerically computed pressure and need to be filtered out.

3. Filtering Procedure

Implementation of the Kleiser-Schumann’s method involves the construction of an influence
matrix. The solution of the pressure Poisson equation (equation 1a) requires the knowledge of pres-
sure boundary conditions (pp) and boundary momentum residuals (Bp) at the (2N, +2N,—4) points,
excluding the corner points. Note that in the three, line, column and checkerboard modes only the
normal component of the boundary momentum residual is nonzero. In essence, a total of
(4N, +4N,-8) unknoWn boundary pressure and normal momentum (esiduals are required in evaluat-
ing the pressure field. These unknowns are evaluated by requiring that continuity and normal mo-
mentum (with the residual) are satisfied at the boundary points excluding the corner points. This pro-
vides the necessary (4N, +4N,~-8) linear equations for the unknown quantities. These equations can

be cast into the following matrix form, A x = R, where A is the influence matrix, £ is the unknown

vector of boundary pressure and normal momentum residual and R is the right hand side. In a three-
dimensional problem, a FQurier transform aldng the periodic z direction will result in 6ﬁe influence
matrix for each Fourier wavenumber k;. Invertibility of the influence matrix is closely related to the
presence of spurious modes. In particular the influence matrix corresponding to k,=0 suffers from
the constant, line, column and checkerboard modes. This influence matrix therefore has four zero
eigenvalues. In the numerical computation of a turbulent square duct flow it was observed that only

for k,=0 were four eigenvalues of the influence matrix of the order 1012, while the lowest of all other

L TR T TRIIC K. BT

RURIEE

ERHIRU

ST R e

I

I N GRTTEN ACRAY T O RV TIN T S RIRER L I T AR T (T T



eigenvalues were around 10-. The eigenvectors corresponding to these eigenvalues are the corre-

sponding spurious boundary pressure and normal component of the momentum residual.
As suggested by Tuckerman [9], the non-invertibility of the influence matrix can be easily
overcome by constructing arelated matrix A’ = M 4’ M~ ! where M and M ™' are the eigenvec-

tor matrix of the original influence matrix and its inverse, respectively, and 4’ is a diagonal matrix

with the eigenvalues along the diagonal and with the zero eigenvalues replaced by some non-zero

constant. The influence matrix now becomes invertible, i.e., A ~''= M 1/A' M~ and the result-

ing pressure and boundary momentum residuals yield a divergence-free flow field independent of
the constant that replaces the zero eigenvalue. Let the p'teigenvalue of the original influence matrix
be zero and be replaced by a constant ¢,. Let the corresponding p'keigenvector be M;,, which is a
vector of boundary pressures and momentum residuals corresponding to a linear combination of the
Mbp
Cp

spurious modes. Contribution of this p" mode to the unknown vector x; is then , where by, is

the projection of the right hand side along the eigenvectors, given by MI;]'-‘ R;. One simple way to
filter the four spurious modes will then be to set the arbitrary constant ¢, to be infinity. In other words,
in the evaluation of A "', one over the zero eigenvalue is replaced by zero. This filtering procedure

was implemented in the computation of turbulent flow in a square duct [11] and it essentially re-
moved all high frequency checkerboard type oscillations. It should be pointed out that such oscilla-
tions can be observed in the k,720 modes as well, especially at high Reynolds numbers when resolu-
tion is only marginal. These oscillations are not due to the spurious modes, but are controlled energy

in the high wavenumber modes.
4. Spurious Modes in Partial and Time-Split Methods
Spurious modes for the partial implementation of the Kleiser-Schumann’s method without

the collocation correction can be analyzed in similar fashion. The spurious modes satisfy the follow-

ing equations.
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Vipgp =0 in

By =0 in £

It can be easily seen that the only admissible solution for the above set of equations is the non-spuri-
ous constant mode én& thére are no spurious modes present. This isconfirmed in the numerical simu-
létion by observing that thé influence matrix for the k27=0 mode hasﬂonly one zér(; eigenvalue and
the corresponding constant mean pressure can be set to zero by replacing the zero eigenvalue by in-
finity.

Spurious modes in the time split implementation will depend on the exact boundary condi-
tions employed for the intermediate star-level velocities (V*) and the pressure Poisson equation. Fol-

lowing Streett and Hussaini [7], if we employ [(2Vp(z) — Vp(z — 81)) - 7] as the boundary condition

for the tangential components of the intermediate star-level velocity, zero penetration for the normal
velocity component and zero Neumann boundary condition for the pressure, then we have the fol-

lowing equations satisfied by the spurious modes:

Vs, = 4t Vpy, in Q
*+ _ 2Re* .
Vv, = A_tev“’p in £
* (Ta-7d)
Vo n=Vpyp-n=0 in 982
V;p T = (ZVPsp(t) = Vpg(t — at)) ‘T in 482

where # and 7 are direction normal and tangential to the boundary. The analysis of the spurious
modes is more complicated and also depends on the initial tangential pressure gradients on the
boundary. With careful choice of initial conditions, the no penetration and pure Neumann boundary

conditions will guarantee no spurious components.

5. Conclusion

Collocation implementation of the Kleiser-Schumann’s method in geometries with two non-
periodic directions have three spurious modes — line, column and checkerboard — contaminating the
computed pressure field. The corner spurious modes are also present but they do not affect evalua-

tion of pressure related quantities. The three spurious modes can be easily filiered out by replacing
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the zero eigenvalues of the influence matrix with infinity before solving for the unknown boundary
pressure and momentum residuals. Partial implementation of the Kleiser-schumann’s method with-
out collocation correction admits no spurious modes. Spurious modes can also be avoided in time-

split implementations.
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